ON CONDITIONAL MONTE CARLO IN RARE EVENT PROBABILITY ESTIMATION

Leslie Murray¹ Héctor Cancela² Gerardo Rubino³

¹ Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario Rosario, Argentina

> ²Facultad de Ingeniería Universidad de la República Montevideo, Uruguay

> > ³IRISA/INRIA Campus de Beaulieu Rennes, France

> > > June, 2012

TALK OUTLINE

- INTRODUCTION
 - The Model Under Analysis
 - Standard Simulation
 - Conditional Monte Carlo
- 2 CONDITIONAL MC ON A MARKOV CHAIN
 - Pure Conditional MC Exact Calculation
 - Conditional MC Intermediate Estimations
- 3 Experimental Setting
 - Model 1
 - Model 2
- 4 Concluding Remarks

- INTRODUCTION
 - The Model Under Analysis
 - Standard Simulation
 - Conditional Monte Carlo
- - Pure Conditional MC Exact Calculation
 - Conditional MC Intermediate Estimations
- - Model 1
 - Model 2

RELIABILITY MODEL MARKOV CHAIN

- X: continuous time Markov Chain that model a highly reliable multi-component system; state space: S.
- ullet Y: discrete time Markov chain, canonically embedded in X.
- $S = U \cup D$ | in U the system is up, in D the system is down.
- The system starts at $\mathbf{u} \in U$, and eventually comes back to \mathbf{u} in time $\tau_{\mathbf{u}}$.
- ullet D is collapsed in a single state d, made absorbing.
- ullet The system eventually hits ${f d}$ in time $au_{f d}$
- It is of interest the estimation of γ :

$$\gamma = \mathbb{P}\{\tau_{\mathbf{d}} < \tau_{\mathbf{u}}\}$$

Reliability Model Markov Chain

- X: continuous time Markov Chain that model a highly reliable multi-component system; state space: S.
- Y: discrete time Markov chain, canonically embedded in X.
- \bullet $S = U \cup D \mid \text{in } U$ the system is up, in D the system is down.
- The system starts at $\mathbf{u} \in U$, and eventually comes back to \mathbf{u}
- D is collapsed in a single state d, made absorbing.
- The system eventually hits d in time τ_d
- It is of interest the estimation of γ :

$$\gamma = \mathbb{P}\{\tau_{\mathbf{d}} < \tau_{\mathbf{u}}\}$$

RELIABILITY MODEL MARKOV CHAIN

- X: continuous time Markov Chain that model a highly reliable multi-component system; state space: S.
- Y: discrete time Markov chain, canonically embedded in X.
- ullet $S=U\cup D\mid$ in U the system is up, in D the system is down.
- The system starts at $\mathbf{u} \in U$, and eventually comes back to \mathbf{u} in time $\tau_{\mathbf{u}}$.
- ullet D is collapsed in a single state d, made absorbing.
- ullet The system eventually hits ${f d}$ in time $au_{f d}$
- It is of interest the estimation of γ :

$$\gamma = \mathbb{P}\{\tau_{\mathbf{d}} < \tau_{\mathbf{u}}\}$$

RELIABILITY MODEL MARKOV CHAIN

- X: continuous time Markov Chain that model a highly reliable multi-component system; state space: S.
- Y: discrete time Markov chain, canonically embedded in X.
- ullet $S=U\cup D\mid$ in U the system is up, in D the system is down.
- The system starts at $\mathbf{u} \in U$, and eventually comes back to \mathbf{u} in time $\tau_{\mathbf{u}}$.
- ullet D is collapsed in a single state d, made absorbing.
- ullet The system eventually hits ${f d}$ in time $au_{f d}$
- It is of interest the estimation of γ :

$$\gamma = \mathbb{P}\{\tau_{\mathbf{d}} < \tau_{\mathbf{u}}\}$$

Reliability Model Markov Chain

- X: continuous time Markov Chain that model a highly reliable multi-component system; state space: S.
- Y: discrete time Markov chain, canonically embedded in X.
- \bullet $S = U \cup D$ | in U the system is up, in D the system is down.
- The system starts at $\mathbf{u} \in U$, and eventually comes back to \mathbf{u} in time τ_{11} .
- D is collapsed in a single state d, made absorbing.
- The system eventually hits d in time τ_d
- It is of interest the estimation of γ :

$$\gamma = \mathbb{P}\{\tau_{\mathbf{d}} < \tau_{\mathbf{u}}\}$$

RELIABILITY MODEL MARKOV CHAIN

- X: continuous time Markov Chain that model a highly reliable multi-component system; state space: S.
- Y: discrete time Markov chain, canonically embedded in X.
- ullet $S=U\cup D\mid$ in U the system is up, in D the system is down.
- The system starts at $\mathbf{u} \in U$, and eventually comes back to \mathbf{u} in time $\tau_{\mathbf{u}}$.
- D is collapsed in a single state d, made absorbing.
- ullet The system eventually hits ${f d}$ in time $au_{f d}$
- It is of interest the estimation of γ :

$$\gamma = \mathbb{P}\{\tau_{\mathbf{d}} < \tau_{\mathbf{u}}\}$$

RELIABILITY MODEL MARKOV CHAIN

- X: continuous time Markov Chain that model a highly reliable multi-component system; state space: S.
- Y: discrete time Markov chain, canonically embedded in X.
- ullet $S=U\cup D\mid$ in U the system is up, in D the system is down.
- The system starts at $\mathbf{u} \in U$, and eventually comes back to \mathbf{u} in time $\tau_{\mathbf{u}}$.
- D is collapsed in a single state d, made absorbing.
- ullet The system eventually hits ${f d}$ in time $au_{f d}$
- It is of interest the estimation of γ :

$$\gamma = \mathbb{P}\{\tau_{\mathbf{d}} < \tau_{\mathbf{u}}\}\$$

- INTRODUCTION
 - The Model Under Analysis

Conditional MC on a Markov Chain

- Standard Simulation
- Conditional Monte Carlo
- - Pure Conditional MC Exact Calculation
 - Conditional MC Intermediate Estimations
- - Model 1
 - Model 2

STANDARD SIMULATION ALGORITHM

- Set X=0, Z=0, and repeat N_1 times:
 - ullet Start a replication at state ${f u}$, and stop it when it hits ${f d}$ or ${f u}$.
 - if it hits d do:

•
$$X = X + 1$$

•
$$Z = Z + 1^2$$

$$\bullet \ \widehat{\gamma}_0 = X/N_1.$$

•
$$\widehat{\mathbb{V}}\{\widehat{\gamma}_0\} = (1/(N_1 - 1))(Z/N_1 - \widehat{\gamma}_0^2).$$

- INTRODUCTION
 - The Model Under Analysis
 - Standard Simulation
 - Conditional Monte Carlo
- - Pure Conditional MC Exact Calculation
 - Conditional MC Intermediate Estimations
- - Model 1
 - Model 2

CONDITIONAL MONTE CARLO FUNDAMENTALS

Suppose that:

• 1 is the indicator of some event $\rightarrow \gamma = \mathbb{E}\{1\}$.

Then,

ullet using some arbitrary random variable C, we have

$$\gamma = \mathbb{E}\{\mathbb{E}\{\mathbf{1} \mid C\}\}.$$

Besides,

$$\begin{split} \mathbb{E}\{\mathbb{V}\{\mathbf{1}\mid C\}\} + \mathbb{V}\{\mathbb{E}\{\mathbf{1}\mid C\}\} &= \mathbb{V}\{\mathbf{1}\} \\ \text{So, } \mathbb{V}\{\mathbb{E}\{\mathbf{1}\mid C\}\} &\leq \mathbb{V}\{\mathbf{1}\} \end{split}$$

The key of Conditional Monte Carlo

The expectation of both, $\mathbb{E}\{\mathbf{1}\mid C\}$ and $\mathbf{1}$, is γ , but the variance of $\mathbb{E}\{\mathbf{1}\mid C\}$ is less than the variance of $\mathbf{1}$

STANDARD AND CONDITIONAL MONTE CARLO ESTIMATORS

• $\gamma = \mathbb{E}\{\mathbf{1}\}$: given the samples $\mathbf{1}^{(j)}, \ j = 1, \dots, N_1,$

$$\widehat{\gamma}_0 = \frac{1}{N_1} \sum_{j=1}^{N_1} \mathbf{1}^{(j)}$$

• $\gamma = \mathbb{E}\{\mathbb{E}\{\mathbf{1} \mid C\}\}$: given the samples $\mathbb{E}\{\mathbf{1} \mid C^{(j)}\}, \ j=1,\ldots,N_1,$

$$\widehat{\gamma}_1 = \frac{1}{N_1} \sum_{j=1}^{N_1} \mathbb{E}\{\mathbf{1} \mid C^{(j)}\}$$

- Sample the values $C^{(j)}$
- Calculate the corresponding $\mathbb{E}\{\mathbf{1} \mid C^{(j)}\}$

- - The Model Under Analysis
 - Standard Simulation
 - Conditional Monte Carlo
- 2 CONDITIONAL MC ON A MARKOV CHAIN
 - Pure Conditional MC Exact Calculation
 - Conditional MC Intermediate Estimations
- - Model 1
 - Model 2

Basic Algorithm

The values to sample from, are known exactly

- $C = \{d, k, u\}, k$ is any state (other than d or u)
- X_C = the first state in C, hit by a replication that starts at ${\bf u}$

$$X_C = \begin{cases} \mathbf{d} & \text{w.p.} & p_{\mathbf{d}} \\ k & \text{w.p.} & p_k \\ \mathbf{u} & \text{w.p.} & p_{\mathbf{u}} \end{cases}$$

Then,

$$\mathbb{E}\{\mathbf{1} \mid X_C\} = \begin{cases} 1 & \text{w.p. } p_{\mathbf{d}} \\ \gamma_k & \text{w.p. } p_k \\ 0 & \text{w.p. } p_{\mathbf{u}} \end{cases}$$
$$\widehat{\gamma}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} \mathbb{E}\{\mathbf{1} \mid X_C^{(j)}\}$$

BASIC ALGORITHM – MANY INTERMEDIATE STATES THE VALUES TO SAMPLE FROM, ARE KNOWN EXACTLY

• $C = \{\mathbf{d}, 1, 2, \dots, n, \mathbf{u}\}$

$$\mathbb{E}\{\mathbf{1} \mid X_C\} = \begin{cases} \gamma_0 = 1 & \text{w.p.} & p_{\mathbf{d}} \\ \gamma_1 & \text{w.p.} & p_1 \\ \gamma_2 & \text{w.p.} & p_2 \\ \vdots & & & \\ \gamma_n & \text{w.p.} & p_n \\ 0 & \text{w.p.} & p_{\mathbf{u}} \end{cases}$$
$$\widehat{\gamma}_1 = \frac{1}{N_1} \sum_{j=1}^{N_1} \mathbb{E}\{\mathbf{1} \mid X_C^{(j)}\}$$

STANDARD SIMULATION GRAPHICAL ILLUSTRATION

Replications started at \mathbf{u} can either:

- ullet hit state ${f d}
 ightarrow$ accumulate a value of 1
- ullet come back to state ${f u}$ ightarrow accumulate a value of 0

Estimate γ , as the average of all the accumulated values.

Basic Algorithm – Many Intermediate States Graphical Illustration

Replications started at ${\bf u}$ can either:

- ullet hit state ${f d}
 ightarrow$ accumulate a value of $\gamma_0=1$
- ullet hit one intermediate state o accumulate the corresponding γ_i
- ullet come back to state ${f u}
 ightarrow$ accumulate a value of 0

Estimate γ , as the average of all the accumulated values.

Basic Algorithm – Many Intermediate States Graphical Illustration

Remark

Conditional MC over many Intermediate States can be seen as a generalization of Crude or Standard Monte Carlo Simulation (average a set of real values instead of just 0s and 1s).

CONDITIONAL MC SIMULATION ALGORITHM

$$\Gamma(\mathbf{d}) = \gamma_0 = 1$$

$$\Gamma(1) = \gamma_1$$

$$\Gamma(2) = \gamma_2$$

$$\vdots$$

$$\Gamma(n) = \gamma_n$$

$$\Gamma(\mathbf{u}) = 0$$

- Set X=0, Z=0, and repeat N_1 times:
 - Start a replication at \mathbf{u} , and stop when it hits some $k \in C$.
 - $X = X + \Gamma(k)$.
 - $Z = Z + \Gamma(k)^2$.
- $\bullet \ \widehat{\gamma}_1 = X/N_1.$
- $\widehat{\mathbb{V}}\{\widehat{\gamma}_1\} = (1/(N_1 1))(Z/N_1 \widehat{\gamma}_1^2).$

- - The Model Under Analysis
 - Standard Simulation
 - Conditional Monte Carlo
- 2 CONDITIONAL MC ON A MARKOV CHAIN
 - Pure Conditional MC Exact Calculation
 - Conditional MC Intermediate Estimations
- - Model 1
 - Model 2

CONDITIONAL MC – INTERMEDIATE ESTIMATIONS

PROPOSAL

If the exact values $\{\gamma_1, \gamma_1, \dots, \gamma_n\}$ are not available, standard estimators $\{\widehat{\gamma}_1, \widehat{\gamma}_2, \dots, \widehat{\gamma}_n\}$ can be used in place.

CONDITIONAL MC – INTERMEDIATE ESTIMATIONS

Proposal

If the exact values $\{\gamma_1, \gamma_1, \dots, \gamma_n\}$ are not available, standard estimators $\{\widehat{\gamma}_1, \widehat{\gamma}_2, \dots, \widehat{\gamma}_n\}$ can be used in place.

CONDITIONAL MC SIMULATION ALGORITHM Intermediate Estimations

- Set X=0, Z=0, and repeat N_1 times:
 - Start a replication at \mathbf{u} , and stop when it hits some $k \in C$.
 - Set Y=0 and repeat N_2 times:
 - Start a replication at state k, stop it when it reaches \mathbf{d} or \mathbf{u} .

Experimental Setting

- If the replication stops at d, do Y = Y + 1.
- $\hat{\gamma}_k = Y/N_2$
- $X = X + \widehat{\gamma}_k$
- $Z = Z + \widehat{\gamma}_k^2$.
- $\widehat{\gamma}_2 = X/N_1$.
- $\widehat{\mathbb{V}}\{\widehat{\gamma}_2\} = (1/(N_1 1))(Z/N_1 \widehat{\gamma}_2^2).$

VARIANCE COMPARISON

Standard:

$$\mathbb{V}\{\widehat{\gamma}_0\} = \frac{1}{N_1} \left(\gamma - \gamma^2 \right) = \frac{1}{N_1} \left(\sum_{i=0}^n p_i \gamma_i - \gamma^2 \right)$$

Pure Conditional MC - Exact Calculation:

$$\mathbb{V}\{\widehat{\gamma}_1\} = \frac{1}{N_1} \left(\sum_{i=0}^n p_i \gamma_i^2 - \gamma^2 \right)$$

Conditional MÇ – Intermediațe Estimations:

$$\mathbb{V}\{\widehat{\gamma}_2\} = \frac{1}{N_1} \left(\sum_{k=0}^n p_k \gamma_k^2 - \gamma^2 \right) + \frac{1}{N_1 N_2} \left(\gamma - \sum_{k=0}^n p_k \gamma_k^2 \right)$$

THE PARTICULAR CASE OF A CUT CONDITIONAL MC – INTERMEDIATE ESTIMATIONS

- Trajectories started at u can never reach state d.
- Our proposal corresponds to a typical Splitting process.

MORE THAN ONE INTERMEDIATE STATES MORE THAN ONE INTERMEDIATE STATES

- Sets $\{C_1, C_2, \dots, C_R\}$, not necessarily cuts.
- Proceed in stages: $\mathbf{u} \to C_1 \to \dots C_R \to \mathbf{d}$
- Accuracy increase (at the expense of computational effort)

- - The Model Under Analysis
 - Standard Simulation
 - Conditional Monte Carlo
- - Pure Conditional MC Exact Calculation
 - Conditional MC Intermediate Estimations
- 3 Experimental Setting
 - Model 1
 - Model 2

Model 1 The Markov Chain

Model 1 Experimental Results

C_1	C_2	C_3	$\widehat{\gamma}$	$\mathrm{W}^{\;(*)}$
4-8-12-16-20	_	_	1.45e-12	44,695
2–6-10	14-18-22	_	1.47e-12	104,878
2-6-10	4-8-12-16-20	_	1.43e-12	53,937
4-8-12-16-20	14-18-22	_	1.44e-12	389,971
1–5	4-8-12-16-20	19–23	1.40e-12	691,542
2-6-10	4-8-12-16-20	14-18-22	1.47e-12	797,691
4-8-12-16-20	9–13–17–21	14-18-22	1.45e-12	443,232
9-13-17-21	14-18-22	19–23	1.50e-12	76,934

(*)
$$W = (\widehat{\mathbb{V}}\{\widehat{\gamma}_0\} \times t_0) / (\widehat{\mathbb{V}}\{\widehat{\gamma}_2\} \times t_2)$$

- - The Model Under Analysis
 - Standard Simulation
 - Conditional Monte Carlo
- - Pure Conditional MC Exact Calculation
 - Conditional MC Intermediate Estimations
- 3 Experimental Setting
 - Model 1
 - Model 2

MODEL 2 THE MARKOV CHAIN

Model 2

Experimental Results – $\epsilon = 0.001$

C_1	C_2	C_3	$\widehat{\gamma}$	W (*)
1–5	_	_	5.00e-09	2
2-6-10	_	_	6.00e-09	1
3–7–11	_	_	8.00e-09	1
4-8-12	_	_	5.98e-09	155
9–13	_	_	7.61e-09	516
2-6-10	3–7–11	_	9.00e-09	1
2-6-10	4-8-12	_	7.50e-09	119
2-6-10	9–13	_	6.77e-09	1,137
3–7–11	4-8-12	_	6.18e-09	146
3–7–11	9–13	_	6.47e-09	1,419
1–5	3–7–11	9–13	6.54e-09	311
2-6-10	3–7–11	4-8-12	4.92e-09	19
3–7–11	4-8-12	9–13	6.30e-09	5,265

(*)
$$W = (\widehat{\mathbb{V}}\{\widehat{\gamma}_0\} \times t_0)/(\widehat{\mathbb{V}}\{\widehat{\gamma}_2\} \times t_2)$$

Conclusions

- Conditional MC Intermediate Estimations shows very high efficiency in several examples.
- In Markov Chains application, Multilevel Splitting is a particular case of Conditional MC – Intermediate Estimations (given the Importance Function, we can build the appropriate sets of intermediate states).
- Conditional MC Intermediate Estimations has a flexibility that can be helpful in analyzing some families of complex models (failure propagation, component dependencies...)
- Conditional MC Intermediate Estimations is of course quite easy to implement.

CURRENT WORK

- Exploration of different areas to find situations where the simplicity of the approach is relevant in practice.
- Test of the method on highly demanding models.
- Extension of the variance analysis to the case of multiple sets of intermediate states (not done yet).
- Looking for optimality results (parameter tuning).
- Comparison to other variance reduction methods.