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Reliability Model
Markov Chain

X: continuous time Markov Chain that model a highly
reliable multi-component system; state space: S.

Y : discrete time Markov chain, canonically embedded in X.

S = U ∪D | in U the system is up, in D the system is down.

The system starts at u ∈ U , and eventually comes back to u

in time τu.

D is collapsed in a single state d, made absorbing.

The system eventually hits d in time τd

It is of interest the estimation of γ:

γ = P{τd < τu}
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Standard Simulation Algorithm

Set X = 0, Z = 0, and repeat N1 times:

Start a replication at state u, and stop it when it hits d or u.
if it hits d do:

X = X + 1

Z = Z + 1
2

γ̂0 = X/N1.

V̂{γ̂0} = (1/(N1 − 1))(Z/N1 − γ̂20).
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Conditional Monte Carlo
Fundamentals

Suppose that:

1 is the indicator of some event → γ = E{1}.

Then,

using some arbitrary random variable C, we have

γ = E{E{1 | C}}.

Besides,

E{V{1 | C}}+V{E{1 | C}} = V{1}

So, V{E{1 | C}} ≤ V{1}

The key of Conditional Monte Carlo

The expectation of both, E{1 | C} and 1, is γ, but the variance of
E{1 | C} is less than the variance of 1
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Standard and Conditional Monte Carlo
Estimators

γ = E{1}: given the samples 1(j), j = 1, . . . , N1,

γ̂0 =
1

N1

N1∑

j=1

1
(j)

γ = E{E{1 | C}}: given the samples
E{1 | C(j)}, j = 1, . . . , N1,

γ̂1 =
1

N1

N1∑

j=1

E{1 | C(j)}

Sample the values C(j)

Calculate the corresponding E{1 | C(j)}
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Basic Algorithm
The values to sample from, are known exactly

C = {d, k,u}, k is any state (other than d or u)

XC = the first state in C, hit by a replication that starts at u

XC =





d w.p. pd
k w.p. pk
u w.p. pu

Then,

E{1 | XC} =





1 w.p. pd
γk w.p. pk
0 w.p. pu

γ̂1 =
1

N1

N1∑

j=1

E{1 | X
(j)
C }
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Basic Algorithm – Many Intermediate States
The values to sample from, are known exactly

C = {d, 1, 2, . . . , n,u}

E{1 | XC} =





γ0 = 1 w.p. pd
γ1 w.p. p1
γ2 w.p. p2
...
γn w.p. pn
0 w.p. pu

γ̂1 =
1

N1

N1∑

j=1

E{1 | X
(j)
C }
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Standard Simulation
Graphical Illustration

u d

Replications started at u can either:
hit state d → accumulate a value of 1

come back to state u → accumulate a value of 0

Estimate γ, as the average of all the accumulated values.
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Basic Algorithm – Many Intermediate States
Graphical Illustration

u d

γ0

γ1

γ2

γ3

Replications started at u can either:
hit state d → accumulate a value of γ0 = 1

hit one intermediate state → accumulate the corresponding γi

come back to state u → accumulate a value of 0

Estimate γ, as the average of all the accumulated values.
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Basic Algorithm – Many Intermediate States
Graphical Illustration

u d

γ0

γ1

γ2

γ3

Remark

Conditional MC over many Intermediate States can be seen as a
generalization of Crude or Standard Monte Carlo Simulation
(average a set of real values instead of just 0s and 1s).
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Conditional MC Simulation Algorithm

Γ(d) = γ0 = 1
Γ(1) = γ1
Γ(2) = γ2

...
Γ(n) = γn
Γ(u) = 0

Set X = 0, Z = 0, and repeat N1 times:

Start a replication at u, and stop when it hits some k ∈ C.
X = X + Γ(k).
Z = Z + Γ(k)2.

γ̂1 = X/N1.

V̂{γ̂1} = (1/(N1 − 1))(Z/N1 − γ̂21).
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Conditional MC – Intermediate Estimations

u d

γ0

γ1

γ2

γ3

Proposal

If the exact values {γ1, γ1, . . . , γn} are not available, standard
estimators {γ̂1, γ̂2, . . . , γ̂n} can be used in place.
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Conditional MC Simulation Algorithm
Intermediate Estimations

Set X = 0, Z = 0, and repeat N1 times:

Start a replication at u, and stop when it hits some k ∈ C.
Set Y = 0 and repeat N2 times:

Start a replication at state k, stop it when it reaches d or u.

If the replication stops at d, do Y = Y + 1.

γ̂k = Y/N2

X = X + γ̂k
Z = Z + γ̂2

k.

γ̂2 = X/N1.

V̂{γ̂2} = (1/(N1 − 1))(Z/N1 − γ̂22).
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Variance Comparison

Standard:

V{γ̂0} =
1

N1

(
γ − γ2

)
=

1

N1

(
n∑

i=0

piγi − γ2

)

Pure Conditional MC – Exact Calculation:

V{γ̂1} =
1

N1

(
n∑

i=0

piγ
2
i − γ2

)

Conditional MC – Intermediate Estimations:

V{γ̂2} =
1

N1

(
n∑

k=0

pkγ
2
k − γ2

)
+

1

N1N2

(
γ −

n∑

k=0

pkγ
2
k

)
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The Particular Case of a Cut
Conditional MC – Intermediate Estimations

u d

γ1 γ2

γ3

γ4

Trajectories started at u can never reach state d.

Our proposal corresponds to a typical Splitting process.
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More than One Intermediate States
More than One Intermediate States

u d

Sets {C1, C2, . . . , CR}, not necessarily cuts.

Proceed in stages: u → C1 → . . . CR → d

Accuracy increase (at the expense of computational effort)



Introduction Conditional MC on a Markov Chain Experimental Setting Concluding Remarks

1 Introduction
The Model Under Analysis
Standard Simulation
Conditional Monte Carlo

2 Conditional MC on a Markov Chain
Pure Conditional MC – Exact Calculation
Conditional MC – Intermediate Estimations

3 Experimental Setting
Model 1
Model 2

4 Concluding Remarks



Introduction Conditional MC on a Markov Chain Experimental Setting Concluding Remarks

Model 1
The Markov Chain
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Model 1
Experimental Results

C1 C2 C3 γ̂ W
(∗)

4–8–12–16–20 — — 1.45e-12 44,695

2–6-10 14–18–22 — 1.47e-12 104,878

2–6–10 4–8–12–16–20 — 1.43e-12 53,937

4–8–12–16–20 14–18–22 — 1.44e-12 389,971

1–5 4–8–12–16–20 19–23 1.40e-12 691,542

2–6–10 4–8–12–16–20 14–18–22 1.47e-12 797,691

4–8–12–16–20 9–13–17–21 14–18–22 1.45e-12 443,232

9–13–17–21 14–18–22 19–23 1.50e-12 76,934

(∗)
W = (V̂{γ̂0} × t0)/(V̂{γ̂2} × t2)
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Model 2
The Markov Chain
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Model 2
Experimental Results – ǫ = 0.001

C1 C2 C3 γ̂ W
(∗)

1–5 — — 5.00e-09 2

2–6–10 — — 6.00e-09 1

3–7–11 — — 8.00e-09 1

4–8–12 — — 5.98e-09 155

9–13 — — 7.61e-09 516

2–6–10 3–7–11 — 9.00e-09 1

2–6–10 4–8–12 — 7.50e-09 119

2–6–10 9–13 — 6.77e-09 1,137

3–7–11 4–8–12 — 6.18e-09 146

3–7–11 9–13 — 6.47e-09 1,419

1–5 3–7–11 9–13 6.54e-09 311

2–6–10 3–7–11 4–8–12 4.92e-09 19

3–7–11 4–8–12 9–13 6.30e-09 5,265

(∗)
W = (V̂{γ̂0} × t0)/(V̂{γ̂2} × t2)
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Conclusions

Conditional MC – Intermediate Estimations shows very high
efficiency in several examples.

In Markov Chains application, Multilevel Splitting is a
particular case of Conditional MC – Intermediate Estimations
(given the Importance Function, we can build the appropriate
sets of intermediate states).

Conditional MC – Intermediate Estimations has a flexibility
that can be helpful in analyzing some families of complex
models (failure propagation, component dependencies...)

Conditional MC – Intermediate Estimations is of course quite
easy to implement.
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Current Work

Exploration of different areas to find situations where the
simplicity of the approach is relevant in practice.

Test of the method on highly demanding models.

Extension of the variance analysis to the case of multiple sets
of intermediate states (not done yet).

Looking for optimality results (parameter tuning).

Comparison to other variance reduction methods.
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