ON CONDITIONAL MONTE CARLO
IN RARE EVENT PROBABILITY ESTIMATION

Leslie Murray®?  Héctor Cancela®?  Gerardo Rubino?

1Facultad de Ciencias Exactas, Ingenieria y Agrimensura
Universidad Nacional de Rosario
Rosario, Argentina

2Facultad de Ingenieria
Universidad de la Reptiblica
Montevideo, Uruguay

3IRISA/INRIA
Campus de Beaulieu
Rennes, France

June, 2012



TALK OUTLINE

@ INTRODUCTION
@ The Model Under Analysis
@ Standard Simulation
@ Conditional Monte Carlo

© ConpiTioNAL MC ON A MARKOV CHAIN
@ Pure Conditional MC — Exact Calculation
@ Conditional MC - Intermediate Estimations

© EXPERIMENTAL SETTING
@ Model 1
@ Model 2

@ CoNCLUDING REMARKS



Introduction
[ le]

@ INTRODUCTION
@ The Model Under Analysis



Introduction
oe

RELIABILITY MODEL

MARKOV CHAIN

® X: continuous time Markov Chain that model a highly
reliable multi-component system; state space: S.
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RELIABILITY MODEL

MARKOV CHAIN

® X: continuous time Markov Chain that model a highly
reliable multi-component system; state space: S.

Y. discrete time Markov chain, canonically embedded in X.

S=UUD |inU the system is up, in D the system is down.

The system starts at u € U, and eventually comes back to u
in time 7.

D is collapsed in a single state d, made absorbing.

The system eventually hits d in time 74

It is of interest the estimation of ~:

v =P{rq < Tu}
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STANDARD SIMULATION ALGORITHM

@ Set X =0, Z =0, and repeat N7 times:
@ Start a replication at state u, and stop it when it hits d or u.
e if it hits d do:

e X=X+1
o Z=27+12

X/Ni.

:)\/
o V{Fo} = (1/(N, — 1))(Z/N; —33).
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CONDITIONAL MONTE CARLO

FUNDAMENTALS

Suppose that:
@ 1 is the indicator of some event — v = [E{1}.
Then,

@ using some arbitrary random variable C', we have

v =E{E{1] C}}.

@ Besides,

E{V{1|C} +V{E{1|C}} = V{1}
So, V{E{1[C}} < V{1}

THE KEY OF CONDITIONAL MONTE CARLO

The expectation of both, E{1 | C'} and 1, is ~, but the variance of
E{1 | C} is less than the variance of 1
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STANDARD AND CONDITIONAL MONTE CARLO

ESTIMATORS

o v=E{1}: given the samples 1), j =1,... Ny,

o v=E{E{1 | C}}: given the samples
E{1[CU)}, j=1,..., N,

1 X
1 G)
M1 Nljz_; E{1|CY}

o Sample the values C'¥) .
o Calculate the corresponding E{1 | C/)}
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© ConpiTioNAL MC ON A MARKOV CHAIN
@ Pure Conditional MC — Exact Calculation
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BAsic ALGORITHM

THE VALUES TO SAMPLE FROM, ARE KNOWN EXACTLY

e C ={d,k,u}, kis any state (other than d or u)
@ X = the first state in C, hit by a replication that starts at u

d w.p. pa
X=X k w.p. pg
u wW.p. Pu
Then,
1 w.p. pa
E{1| Xct=4q w wp. pi
0 w.p. pu

1 & )
~ _ J
"M = N, jE—l E{1|Xs"}
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BAsic ALGORITHM — MANY INTERMEDIATE STATES

THE VALUES TO SAMPLE FROM, ARE KNOWN EXACTLY

e C=1{d,1,2,...,n,u}

Y=1 w.p. pa

g wW.p. D1

V2 W.p. P2
E{1] Xch=1 .

Tn W.p. DPn

0 W.p. Pu

1 )
~ _ J
"M = N jE—l E{1]Xs"}
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STANDARD SIMULATION

GRAPHICAL ILLUSTRATION

Replications started at u can either:
@ hit state d — accumulate a value of 1

@ come back to state u — accumulate a value of 0

Estimate ~, as the average of all the accumulated values.
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BAsic ALGORITHM — MANY INTERMEDIATE STATES

GRAPHICAL ILLUSTRATION

Replications started at u can either:
@ hit state d — accumulate a value of 7o =1

@ hit one intermediate state — accumulate the corresponding ~;

@ come back to state u — accumulate a value of 0

Estimate 7, as the average of all the accumulated values.
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BAsic ALGORITHM — MANY INTERMEDIATE STATES

GRAPHICAL ILLUSTRATION

Conditional MC over many Intermediate States can be seen as a
generalization of Crude or Standard Monte Carlo Simulation
(average a set of real values instead of just Os and 1s).
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CONDITIONAL MC SIMULATION ALGORITHM

I'(d) =7 =1
L) =m
['(2) =
I(n) = 7
I'(u)=0

@ Set X =0, Z =0, and repeat N times:
@ Start a replication at u, and stop when it hits some k € C.
o X =X+T(k).
o L =7+ F(k)Q.

X/Ny.

:)\/
o V(A1) = (1/(N: — 1))(Z/Ny — 7).
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@ Conditional MC - Intermediate Estimations
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CONDITIONAL MC — INTERMEDIATE ESTIMATIONS

PROPOSAL

If the exact values {y1,71,...,7n} are not available, standard
estimators {71,792, ...,7,} can be used in place.
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CONDITIONAL MC SIMULATION ALGORITHM

INTERMEDIATE ESTIMATIONS

@ Set X =0, Z =0, and repeat N7 times:
o Start a replication at u, and stop when it hits some k € C.
o Set Y = 0 and repeat N5 times:
@ Start a replication at state k, stop it when it reaches d or u.
@ If the replication stops atd, do Y =Y + 1.

o ’yk:Y/NQ

o X=X+

0Z2Z+%
X/Ny

:)\/
o V() = (1/(N, — 1))(Z/N; —33).
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VARIANCE COMPARISON

Standard:

1 1 (&
V{Ao} = (v V) = w (me — 72>
=0

Pure Condltlonal MC — Exact Calculation:

Vi) = (me — >

Condltlonal MC - Intermediate Estimations:
n

V{F,} = (mek > + N11N2 (7 -> pmﬁ)
k=0
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THE PARTICULAR CASE OF A CUT

CONDITIONAL MC — INTERMEDIATE ESTIMATIONS

@ Trajectories started at u can never reach state d.

@ Our proposal corresponds to a typical Splitting process.
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MORE THAN ONE INTERMEDIATE STATES

MORE THAN ONE INTERMEDIATE STATES

@ Sets {C1,Cy,...,CR}, not necessarily cuts.
@ Proceed in stages: u - C; —...Cr —d

@ Accuracy increase (at the expense of computational effort)
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MoDEL 1

EXPERIMENTAL RESULTS

C Cy Cs 3 W)
4-8-12-16-20 — — 1.45e-12 44,695
2-6-10 14-18-22 — 1.47e-12 104,878
2-6-10 4-8-12-16-20 — 1.43e-12 53,937
4-8-12-16-20 14-18-22 — 1.44e-12 389,971
1-5 4-8-12-16-20 19-23 1.40e-12 691,542
2-6-10 4-8-12-16-20 14-18-22 1.47e-12 797,691
4-8-12-16-20 0-13-17-21 14-18-22 1.45e-12 443,232
0-13-17-21 14-18-22 19-23 1.50e-12 76,934

) W = (V{Fo} x to)/(V{Az2} x t2)
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MODEL 2
EXPERIMENTAL RESULTS — € = 0.001
| C1 | Cy Cs v w
1-5 — — 5.00e-09 2
2-6-10 — — 6.00e-09 1
3-7-11 — — 8.00e-09 1
4-8-12 — — 5.98e-09 155
9-13 — — 7.61e-09 516
2-6-10 3-7-11 — 9.00e-09 1
2-6-10 4-8-12 — 7.50e-09 119
2-6-10 9-13 — 6.77e-09 1,137
3-7-11 4-8-12 — 6.18e-09 146
3-7-11 9-13 — 6.47e-09 1,419
1-5 3-7-11 9-13 6.54e-09 311
2-6-10 3-7-11 4-8-12 4.92e-09 19
3-7-11 4-8-12 9-13 6.30e-09 5,265

) W = (V{Fo} x to)/(V{7F2} x t2)
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CONCLUSIONS

@ Conditional MC — Intermediate Estimations shows very high
efficiency in several examples.

@ In Markov Chains application, Multilevel Splitting is a
particular case of Conditional MC — Intermediate Estimations
(given the Importance Function, we can build the appropriate
sets of intermediate states).

@ Conditional MC — Intermediate Estimations has a flexibility
that can be helpful in analyzing some families of complex
models (failure propagation, component dependencies...)

@ Conditional MC — Intermediate Estimations is of course quite
easy to implement.
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CURRENT WORK

@ Exploration of different areas to find situations where the
simplicity of the approach is relevant in practice.

@ Test of the method on highly demanding models.

@ Extension of the variance analysis to the case of multiple sets
of intermediate states (not done yet).

@ Looking for optimality results (parameter tuning).

@ Comparison to other variance reduction methods.



	Introduction
	The Model Under Analysis
	Standard Simulation
	Conditional Monte Carlo

	Conditional MC on a Markov Chain
	Pure Conditional MC – Exact Calculation
	Conditional MC – Intermediate Estimations

	Experimental Setting
	Model 1
	Model 2

	Concluding Remarks
	


