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Quantifying Insurance Risk
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Risk and Solvency

General context

m Solvency Il - the new regulatory framework
m Internal models for risk assessment

m Solvency principle: leave the company “as is” for one year,
then the value of assets
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Quantifying Insurance Risk
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Risk and Solvency

Insurance portfolio

m Assets (fixed income, stocks, real estate)
m Liabilities (claim payments, reserves)

m Solvency capital requirement: VaRg oo5(A1 — L1) < 0 or
equivalently F ' 11 (L Ay) (0.995) < 0, where

n

e (L — A) =€ " > (E[Cx | F1] - E[C])e™ (hrrnenknt)
k=1

+ discounted loss from assets.
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[e]e]e] le]e]

Risk and Solvency

Claims Triangle: observed claims

Development year

Origin | 0 1 2 ceeoon—1 n
—-n—1 Conc1o Con1q Copoi2 -+ Copipn—1 C_p_ap

—n C_no C_n1 C_np2 <+ C_pp_t

—2 | C_2p C_21
—1 071,0
0

Table: The observed upper triangle of paid claims. C_;; is cumulative
claim amount for claims occurring in period —i and paid before time
—i 4.
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Risk and Solvency

Claims Triangle: unobserved claims

Development year
Origin | 0 1 2 ceeoon—1 n
—-n—1
—n C—n,n
—n+1 C nitin1 Conpin
—1 C41 Coy2 -+ C_qpq C_1n
0 | Goo GCona Co,2 -+ Con—1 Co.n

Table: The unobserved triangle of outstanding claims to be predicted.
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Quantifying Insurance Risk
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Risk and Solvency

Need for Simulation Algorithms

m Many dependent risk factors
m Rare events of interest

m Need decent approximation of the tail of the distribution
(not only quantile estimates)

m Possible reduction of computational cost by efficient
sampling
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Computing Risk Measures by Simulation
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Risk measures

Main message

Designing efficient importance sampling algorithms for rare
event probabilities is a good starting point for computing (tail)
risk measures efficiently.

Efficient Monte Carlo Algorithms for Computing High



Computing Risk Measures by Simulation
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Risk measures

Risk measures
Value-at-Risk and Expected Shortfall

Consider a random variable X ~ Fx, representing the net worth
attime 1. Let L = —e~ "1 X be the discounted loss.

m Value-at-Risk (quantile):
VaRy(X) = F, (1 - p) = inf{x : F.(x) > 1 - p},
m Expected shortfall:

P

where p is small; say 0.005.
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Computing Risk Measures by Simulation
(o] lelelele)
Computation by importance sampling

Value-at-Risk

m Generate L4, ..., Ly independently from the sampling
distribution G.

m Form the weighted empirical distribution/tall
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Computing Risk Measures by Simulation
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Computation by importance sampling

VaR continued

m Estimate VaR, by G (p) where

Gp'(p) = inf{x : Gn(x) < p} = {picture} = Ly n,
k=inf{m: wy +-- -+ wy > p},

and w; = g5 (Ljn).
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Computation by importance sampling

[llustration
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From diploma thesis of P. Miiller (KTH/ETH)
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Computation by importance sampling

Risk measures by importance sampling
Expected Shortfall

Computing Expected Shortfall by importance sampling:
m Generate L4,..., Ly independently from G and form Gy.
m Compute the estimate

/ G u)du = {picture}

(ZW/ N+ (P = kziW/ LkN)
j=1
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Computation by importance sampling

lllustration
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From diploma thesis of P. Miller (KTH/ETH)
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Empirical processes and Large deviations
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Empirical processes and importance sampling

Asymptotic theory

The large sample limit

m Empirical process theory (CLTs as N — o)

m Large deviations theory (extensions of Sanov’s theorem)
as N —» o
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Empirical processes and Large deviations
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Empirical processes and importance sampling

Empirical processes

m Suppose the empirical measures satisfies a CLT
VN(Gy - F) % Z,

where Z is centered Gaussian,
m ... and the delta-method implies

VN($(Gn) — ¢(F)) % ¢&(2),

m then we can use the asymptotic variance Var(¢z(Z)) to
measure efficiency.

Objective: select sampling distribution G, to get Std(¢/-(Z)) of
roughly the size of ¢(F).
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Empirical processes and Large deviations
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Empirical processes and importance sampling

Empirical processes and importance sampling
The CLT

Let G be the sampling distribution and w(-) = 9&(.).

m Let 7, be the indicator functions x — I{x > t}, t > a.
m Then, the weighted empirical measure

N
1 dF ~
Gn(f) = N = @(Lj)f(Lj) = Fn(wr),
where [y, is the empirical measure based on L;, generated
from G;
~ 1
Fn(f) = § = f(L;)-
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Empirical processes and Large deviations
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Empirical processes and importance sampling

Empirical processes and importance sampling
The CLT

m We have a CLT: VN(Gn(f) — F(f)) 2 Zin L®(F,)
precisely if wF;is a G-Donsker class.

m A sufficient condition for w5 to be G-Donsker is that F5 is
G-Donsker and Ef[w(X;)I{ X; > a}] < oco.
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Empirical processes and importance sampling

Empirical processes and importance sampling

Identifying the limit process

The limiting process Z is centered Gaussian with covariance
function

o(x,y) = NCov(Gn(x),Gn(y))
= EG[GN(X)GN(Y)] — EGIGN(X)]EG[GN(Y)]

= EF[w(X)[{X > y}] — F(x)F(y),

when y > x > a.
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Empirical processes and Large deviations
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Risk measures by importance sampling

VaR by importance sampling
CLT

Theorem Let Z be centered Gaussian with covariance .
Suppose F has a continuous density f > 0 on the interval
[F7'(q) —¢, F'(p) + €], for0 < p< g<1ande> 0. Then

_ iy w ZoFV
\/N(GN1_F 1)_>W7 inL [paq]7

where the right-hand side refers to the random function
Z(F~(u))
U RET)
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Empirical processes and Large deviations
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Risk measures by importance sampling

ES by importance sampling
CLT

Expected shortfall is given by
1P —1
ES1_p(X) = P/o F1(u)du = 7p(F ).

It is estimated by vp(Gy').
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Empirical processes and Large deviations
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Risk measures by importance sampling

ES by importance sampling
CLT

Theorem Assume the hypotheses in the previous theorem
and in addition that p(x, x) = o([f(x)/F(x)]?) and

/ / o(x,y)dxdy < oc.

Then
o F-1
VN(ER') — 7 F)) % vp(%)
1 P2F W),
“pJo AT
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Random iterative
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Robbins-Monro

Robbins-Monro algorithm

m Let f: R — R be continuous and decreasing.
m Look for x* solving f(x*) = 0.
m Robbins-Monro Algorithm:
m Take X, = Xo—1 + pnYn Where E[Y, | Xn—1] = f(X,—1) and

an:oo, pr,<oo.

m Example: Take f(x) = F(x) — p to search for a quantile.
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Random iterative
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Bayesian Root Finding

A Bayesian Root Finding Method

(Horstein, '63; Waeber, Frazier, and Henderson, '11)

m Let f:(0,1) — R be continuous and decreasing.
m Look for x* solving f(x*) = 0.
m Can evaluate f(x) with error and observe Y(x) where

1 wp. g ifx<x¥,
-1 wp. 1—qg ifx<x*,
1 wp. 1—qg ifx>x*
-1 w.p. g ifx>x*

Y(x) =

m Algorithm:
m Let o be a prior on x*.
m Measure at x; = median(m).
m Observe Yi(x) and compute posterior m1(x* | Yi(x)).
m Take xo = median() and iterate.
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Random iterative
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Bayesian Root Finding

A quantile estimation test problem

Heavy-tailed random walk

m Let X = Sk =2 +--- + Z a heavy-tailed random walk
(reg. var.)

m Then F(x) = x~®L(x) where L is slowly varying

m Have efficient importance sampler for computing F(x).

m How to select thresholds xq, x», ... to obtain

a good estimate of x, = F~'(p) with p close to 1?
a good approximation of F above Xp?
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Random iterative
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Bayesian Root Finding

A Normal Bayesian Algorithm
(with C. Mercadier)

m Aim to estimate x, by first estimating xg'.

m Start with prior on xg given as N(x{, vf).

m Compute estimate p; of F(x;) by I.S. based on sample
size m.

m Dy is approx N(F(xy),o5/m).

m Using F(cx) =~ ¢~ “F(x) with ¢ = X1 /Xp, X = X, it follows
that py is approx N(p(xp/x1), 02 /m).
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Random iterative
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Bayesian Root Finding

A Normal Bayesian Algorithm
(with C. Mercadier)

m Then the posterior of xg' is normal with
mpv?

2 2+mp2v1 x7'(p1 — p)

mean = xy" +

mpv1

2

m lterating the algorithm gives the foIIowmg updates:
2

mpvy ~
XS =Xy Xy (bn—p
n+1 n X,%O‘O'% + mp2v,§ n( )
2
mpvy
2 2
% =V, pv,.
n+1 n X2a 2+mp2v2 n
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Random iterative
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Bayesian Root Finding

Summary

m Efficient simulation is relevant in insurance (and finance)
application, when building models for risk assessment.

m Efficient importance algorithms for computing rare-event
probabilities is a good starting point for computing risk
measures.

m Theoretical analysis is possible by means of empirical
process theory (CLT/LDP)

m Adapted importance sampling procedures needed to find
the appropriate tail region.
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