Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	000000	00
	000000	0000	000000

Efficient Monte Carlo Algorithms for Computing High Quantiles Motivation from Insurance

Henrik Hult

Department of Mathematics KTH Institute of Technology Sweden

June 26, 2012 / RESIM 2012 Trondheim

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	000000	00
	000000	0000	000000

Outline

- 1 Quantifying Insurance Risk
 - Risk and Solvency
- 2 Computing Risk Measures by Simulation
 - Risk measures
 - Computation by importance sampling
- 3 Empirical processes and Large deviations
 - Empirical processes and importance sampling

★ E ▶ ★ E ▶ E E ● ○ Q ○

- Risk measures by importance sampling
- 4 Random iterative methods
 - Robbins-Monro
 - Bayesian Root Finding

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
00000	000	000000	00

Outline

Quantifying Insurance Risk Risk and Solvency

- 2 Computing Risk Measures by Simulation
 - Risk measures
 - Computation by importance sampling
- 3 Empirical processes and Large deviations
 - Empirical processes and importance sampling

< 口 > < 同

▲ E ▶ ▲ E ▶ E E

- Risk measures by importance sampling
- 4 Random iterative methods
 - Robbins-Monro
 - Bayesian Root Finding

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
00000	000 000000	000000 0000	00 000000

- Solvency II the new regulatory framework
- Internal models for risk assessment
- Solvency principle: leave the company "as is" for one year, then the value of assets

★ E ▶ ★ E ▶ E = のQQ

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
000000	000	000000	00 000000

Insurance portfolio

- Assets (fixed income, stocks, real estate)
- Liabilities (claim payments, reserves)
- Solvency capital requirement: $VaR_{0.005}(A_1 L_1) < 0$ or equivalently $F_{e^{-r_1}(L_1 A_1)}^{-1}(0.995) < 0$, where

$$e^{-r_1}(L_1 - A_1) = e^{-r_1} \sum_{k=1}^n (E[C_k \mid \mathcal{F}_1] - E[C_k]) e^{-(r_{k-1} + \Delta r_{k-1})(k-1)}$$

+ discounted loss from assets.

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
000000	000	000000	00
	000000	0000	000000

Claims Triangle: observed claims

		Deve	elopment yea	ar		
Origin	0	1	2		<i>n</i> – 1	n
- <i>n</i> - 1	$C_{-n-1,0}$	$C_{-n-1,1}$	$C_{-n-1,2}$	• • •	$C_{-n-1,n-1}$	$C_{-n-1,n}$
<i>-n</i>	$C_{-n,0}$	<i>C</i> _{-<i>n</i>,1}	$C_{-n,2}$		$C_{-n,n-1}$	
:	:	:				
•	•	•				
-2	$C_{-2,0}$	$C_{-2,1}$				
-1	$C_{-1,0}$					
0	7					

Table: The observed upper triangle of paid claims. $C_{-i,j}$ is cumulative claim amount for claims occurring in period -i and paid before time -i + j.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
000000	000	000000	00
	000000	0000	000000

Claims Triangle: unobserved claims

Table: The unobserved triangle of outstanding claims to be predicted.

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
00000	000	000000	00
	000000	0000	000000

Need for Simulation Algorithms

- Many dependent risk factors
- Rare events of interest
- Need decent approximation of the tail of the distribution (not only quantile estimates)

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

 Possible reduction of computational cost by efficient sampling

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 000000	000000	00 000000

▲ E ▶ ▲ E ▶ E E

Risk measures

Outline

- Quantifying Insurance Risk
 Risk and Solvency
- Computing Risk Measures by Simulation
 Risk measures
 - Computation by importance sampling
- 3 Empirical processes and Large deviations
 Empirical processes and importance sampling
 Biak massures by importance compliant
 - Risk measures by importance sampling
- 4 Random iterative methods
 - Robbins-Monro
 - Bayesian Root Finding

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	000000 0000	00 000000

Risk measures

Designing efficient importance sampling algorithms for rare event probabilities is a good starting point for computing (tail) risk measures efficiently.

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	00 000000	000000 0000	00 000000
D : 1			

Risk measures

Risk measures Value-at-Risk and Expected Shortfall

Consider a random variable $X \sim F_X$, representing the net worth at time 1. Let $L = -e^{-r_1}X$ be the discounted loss.

Value-at-Risk (quantile):

$$VaR_{p}(X) = F_{L}^{-1}(1-p) = \inf\{x : F_{L}(x) \ge 1-p\},\$$

Expected shortfall:

$$\mathsf{ES}_{\rho}(X) = \frac{1}{\rho} \int_{0}^{\rho} \mathsf{VaR}_{u}(X) du$$

★ E ▶ ★ E ▶ E E ● ○ Q ○

where p is small; say 0.005.

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 ●00000	000000 0000	00 000000
Computation by importance	sampling		

Outline

- Quantifying Insurance Risk
 Risk and Solvency
- 2 Computing Risk Measures by Simulation
 - Risk measures
 - Computation by importance sampling
- 3 Empirical processes and Large deviations
 - Empirical processes and importance sampling

▲ E ▶ ▲ E ▶ E E

- Risk measures by importance sampling
- 4 Random iterative methods
 - Robbins-Monro
 - Bayesian Root Finding

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	00000		
Computation by importance	sampling		

Value-at-Risk

- Generate *L*₁,..., *L*_N independently from the sampling distribution *G*.
- Form the weighted empirical distribution/tail

$$\mathbb{G}_{N}(\cdot) = \frac{1}{N} \sum_{j=1}^{N} \frac{dF}{dG}(L_{j})\delta_{L_{j}}(\cdot),$$
$$\mathbb{G}_{N}(x) = \frac{1}{N} \sum_{j=1}^{N} \frac{dF}{dG}(L_{j})I\{L_{j} > x\}, \quad x \in R.$$

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 000000	000000	00 000000
Computation by importance	sampling		

VaR continued

Estimate VaR_{ρ} by $\mathbb{G}_N^{-1}(\rho)$ where

$$\mathbb{G}_{N}^{-1}(\rho) = \inf\{x : \mathbb{G}_{N}(x) \le \rho\} = \{\text{picture}\} = L_{k,N}, \\ k = \inf\{m : w_{1} + \dots + w_{m} \ge \rho\},\$$

and $w_j = \frac{dF}{dG}(L_{j,N})$.

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 000000	000000	00 000000
Computation by importance	sampling		

Illustration

From diploma thesis of P. Müller (KTH/ETH)

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 000000	000000	00 000000

Computation by importance sampling

Risk measures by importance sampling Expected Shortfall

Computing Expected Shortfall by importance sampling:

- Generate L_1, \ldots, L_N independently from *G* and form \mathbb{G}_N .
- Compute the estimate

$$\frac{1}{p} \int_0^p \mathbb{G}_N^{-1}(u) du = \{ \text{picture} \} \\ = \frac{1}{p} \Big(\sum_{j=1}^{k-1} w_j L_{j,N} + (p - \sum_{j=1}^{k-1} w_j) L_{k,N} \Big).$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 000000	000000	00 000000
Computation by importance	sampling		

Illustration

From diploma thesis of P. Müller (KTH/ETH)

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	00000 0000	00 000000

Outline

- Quantifying Insurance Risk
 Risk and Solvency
- 2 Computing Risk Measures by Simulation
 - Risk measures
 - Computation by importance sampling
- 3 Empirical processes and Large deviations
 - Empirical processes and importance sampling

★ E ▶ ★ E ▶ E E ● ○ Q ○

- Risk measures by importance sampling
- 4 Random iterative methods
 - Robbins-Monro
 - Bayesian Root Finding

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 000000	00000 0000	00 000000

Asymptotic theory The large sample limit

- Empirical process theory (CLTs as $N \to \infty$)
- Large deviations theory (extensions of Sanov's theorem) as $N \to \infty$

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	00000	00 000000

Empirical processes

Suppose the empirical measures satisfies a CLT

$$\sqrt{N}(\mathbb{G}_N-F)\stackrel{\mathrm{w}}{\rightarrow} Z,$$

where Z is centered Gaussian,

... and the delta-method implies

$$\sqrt{N}(\phi(\mathbb{G}_N) - \phi(F)) \stackrel{\scriptscriptstyle{w}}{\rightarrow} \phi'_F(Z),$$

then we can use the asymptotic variance Var(\u03c6/F(Z)) to measure efficiency.

Objective: select sampling distribution G_n to get $Std(\phi'_F(Z))$ of roughly the size of $\phi(F)$.

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	000000	00
	000000	0000	000000

Empirical processes and importance sampling The CLT

Let *G* be the sampling distribution and $w(\cdot) = \frac{dF}{dG}(\cdot)$.

- Let \mathcal{F}_a be the indicator functions $x \mapsto I\{x > t\}, t \ge a$.
- Then, the weighted empirical measure

$$\mathbb{G}_N(f) = \frac{1}{N} \sum_{j=1}^N \frac{dF}{dG}(L_j)f(L_j) = \tilde{\mathbb{F}}_N(wf),$$

where $\tilde{\mathbb{F}}_N$ is the empirical measure based on L_j , generated from *G*;

$$\tilde{\mathbb{F}}_{N}(f) = \frac{1}{N} \sum_{j=1}^{N} f(L_{j}).$$

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	000000	00
	000000	0000	000000

Empirical processes and importance sampling The CLT

- We have a CLT: $\sqrt{N}(\mathbb{G}_N(f) F(f)) \xrightarrow{w} Z$ in $L^{\infty}(\mathcal{F}_a)$ precisely if $w\mathcal{F}_a$ is a *G*-Donsker class.
- A sufficient condition for wF_a to be G-Donsker is that F_a is G-Donsker and E_F[w(X_j)I{X_j > a}] < ∞.</p>

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	00000	00 000000

Empirical processes and importance sampling Identifying the limit process

The limiting process Z is centered Gaussian with covariance function

$$\varrho(x, y) = N \operatorname{Cov}(\mathbb{G}_N(x), \mathbb{G}_N(y))$$

= $E_G[\mathbb{G}_N(x)\mathbb{G}_N(y)] - E_G[\mathbb{G}_N(x)]E_G[\mathbb{G}_N(y)]$
= ...
= $E_F[w(X)I\{X > y\}] - F(x)F(y),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

when $y \ge x \ge a$.

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	● ● ● 000	00

Outline

- Quantifying Insurance Risk
 Risk and Solvency
- 2 Computing Risk Measures by Simulation
 - Risk measures
 - Computation by importance sampling
- 3 Empirical processes and Large deviations
 - Empirical processes and importance sampling

★ E ▶ ★ E ▶ E E ● ○ Q ○

- Risk measures by importance sampling
- 4 Random iterative methods
 - Robbins-Monro
 - Bayesian Root Finding

Quantifying Insurance Risk Comp	outing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
000000 0000		000000 0000	00 000000

VaR by importance sampling

Theorem Let *Z* be centered Gaussian with covariance ϱ . Suppose *F* has a continuous density f > 0 on the interval $[F^{-1}(q) - \epsilon, F^{-1}(p) + \epsilon]$, for $0 and <math>\epsilon > 0$. Then

$$\sqrt{N}(\mathbb{G}_N^{-1}-F^{-1}) \stackrel{\scriptscriptstyle{\mathrm{w}}}{
ightarrow} rac{Z\circ F^{-1}}{f\circ F^{-1}}, \quad ext{ in } L^\infty[p,q],$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where the right-hand side refers to the random function $u \mapsto \frac{Z(F^{-1}(u))}{f(F^{-1}(u))}$.

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	00000	00
	000000	0000	000000

ES by importance sampling

Expected shortfall is given by

$$ES_{1-p}(X) = \frac{1}{p} \int_0^p F^{-1}(u) du =: \gamma_p(F^{-1}).$$

It is estimated by $\gamma_p(\mathbb{G}_N^{-1})$.

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 000000	000000 000●	00 000000

ES by importance sampling

Theorem Assume the hypotheses in the previous theorem and in addition that $\rho(x, x) = o([f(x)/F(x)]^2)$ and

$$\int_{F^{-1}(\rho)}^{\infty}\int_{F^{-1}(\rho)}^{\infty}\varrho(x,y)dxdy<\infty.$$

Then

$$\begin{split} \sqrt{N}(\gamma_{p}(\mathbb{G}_{N}^{-1})-\gamma_{p}(F^{-1})) &\xrightarrow{w} \gamma_{p}\Big(\frac{Z\circ F^{-1}}{f\circ F^{-1}}\Big) \\ &= \frac{1}{p}\int_{0}^{p}\frac{Z(F^{-1}(u))}{f(F^{-1}(u))}du. \end{split}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 000000	000000 0000	• 0 000000

Robbins-Monro

Outline

- Quantifying Insurance Risk
 Risk and Solvency
- 2 Computing Risk Measures by Simulation
 - Risk measures
 - Computation by importance sampling
- 3 Empirical processes and Large deviations
 - Empirical processes and importance sampling

★ E ▶ ★ E ▶ E E ● ○ Q ○

- Risk measures by importance sampling
- 4 Random iterative methods
 - Robbins-Monro
 - Bayesian Root Finding

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	00000	00 000000

Robbins-Monro

Robbins-Monro algorithm

- Let $f : \mathbf{R} \to \mathbf{R}$ be continuous and decreasing.
- Look for x^* solving $f(x^*) = 0$.
- Robbins-Monro Algorithm:

Take
$$X_n = X_{n-1} + \rho_n Y_n$$
 where $E[Y_n | X_{n-1}] = f(X_{n-1})$ and

$$\sum \rho_n = \infty, \quad \sum \rho_n^2 < \infty.$$

◆□> <□> <=> <=> <=> <=> <=> <=>

• *Example:* Take $f(x) = \overline{F}(x) - p$ to search for a quantile.

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000 000000	000000 0000	00 ●00000

Outline

- Quantifying Insurance Risk
 Risk and Solvency
- 2 Computing Risk Measures by Simulation
 - Risk measures
 - Computation by importance sampling
- 3 Empirical processes and Large deviations
 - Empirical processes and importance sampling

★ E ▶ ★ E ▶ E = のQQ

- Risk measures by importance sampling
- 4 Random iterative methods
 - Robbins-Monro
 - Bayesian Root Finding

Quantifying Insurance Risk (Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
	000	000000	00
	000000	0000	00000

A Bayesian Root Finding Method

(Horstein, '63; Waeber, Frazier, and Henderson, '11)

- Let $f: (0, 1) \rightarrow \mathbf{R}$ be continuous and decreasing.
- Look for x^* solving $f(x^*) = 0$.
- Can evaluate f(x) with error and observe Y(x) where

$$Y(x) = \begin{cases} 1 & \text{w.p.} & q & \text{if } x < x^*, \\ -1 & \text{w.p.} & 1 - q & \text{if } x < x^*, \\ 1 & \text{w.p.} & 1 - q & \text{if } x > x^*, \\ -1 & \text{w.p.} & q & \text{if } x > x^*. \end{cases}$$

Algorithm:

- Let π_0 be a prior on x^* .
- Measure at $x_1 = \text{median}(\pi_0)$.
- Observe $Y_1(x)$ and compute posterior $\pi_1(x^* | Y_1(x))$.

・ロト・西ト・モート 山口 うらの

• Take $x_2 = \text{median}(\pi_1)$ and iterate.

Quantifying Insurance Risk Comp	buting Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
000000 000		000000 0000	00 00●000

A quantile estimation test problem

Heavy-tailed random walk

- Let $X = S_k = Z_1 + \cdots + Z_k$ a heavy-tailed random walk (reg. var.)
- Then $\overline{F}(x) = x^{-\alpha}L(x)$ where *L* is slowly varying
- Have efficient importance sampler for computing $\overline{F}(x)$.
- How to select thresholds x_1, x_2, \ldots to obtain
 - **1** a good estimate of $x_p = F^{-1}(p)$ with p close to 1?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2 a good approximation of \overline{F} above x_p ?

Quantifying Insurance Risk C	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
000000 0	000	000000 0000	00 000000

A Normal Bayesian Algorithm

(with C. Mercadier)

- Aim to estimate x_p by first estimating x_p^{α} .
- Start with prior on x_p^{α} given as $N(x_1^{\alpha}, v_1^2)$.
- Compute estimate \hat{p}_1 of $\overline{F}(x_1)$ by I.S. based on sample size *m*.
- $\widehat{p}_1 \text{ is approx } N(\overline{F}(x_1), \sigma_1^2/m).$
- Using $\overline{F}(cx) \approx c^{-\alpha}\overline{F}(x)$ with $c = x_1/x_p$, $x = x_p$ it follows that \hat{p}_1 is approx $N(p(x_p/x_1)^{\alpha}, \sigma_1^2/m)$.

000000 000 00000 00	Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative
000000 00000 0 00000		000 000000	000000 0000	00 0000●0

A Normal Bayesian Algorithm

(with C. Mercadier)

• Then the posterior of x_p^{α} is normal with

$$\begin{split} \mathsf{mean} &= x_1^{\alpha} + \frac{m \rho v_1^2}{x_1^{2\alpha} \sigma_1^2 + m \rho^2 v_1^2} x_1^{\alpha} (\widehat{p}_1 - \rho) \\ \mathsf{var} &= v_1^2 - \frac{m \rho v_1^2}{x_1^{2\alpha} \sigma_1^2 + m \rho^2 v_1^2} \rho v_1^2. \end{split}$$

Iterating the algorithm gives the following updates:

$$\begin{aligned} x_{n+1}^{\alpha} &= x_n^{\alpha} + \frac{mpv_n^2}{x_n^{2\alpha}\sigma_n^2 + mp^2v_n^2} x_n^{\alpha}(\widehat{p}_n - p) \\ v_{n+1}^2 &= v_n^2 - \frac{mpv_n^2}{x_n^{2\alpha}\sigma_n^2 + mp^2v_n^2} pv_n^2. \end{aligned}$$

▶ Ξ|= りへで

Quantifying Insurance Risk	Computing Risk Measures by Simulation	Empirical processes and Large deviations	Random iterative ○○ ○○○○○●
Bavesian Boot Finding			

Summary

- Efficient simulation is relevant in insurance (and finance) application, when building models for risk assessment.
- Efficient importance algorithms for computing rare-event probabilities is a good starting point for computing risk measures.
- Theoretical analysis is possible by means of empirical process theory (CLT/LDP)
- Adapted importance sampling procedures needed to find the appropriate tail region.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References

References I

Blanchet, J. and Glynn, P.

Efficient rare-event simulation for the maximum of heavy-tailed random walks. *Ann. Appl. Prob.*, 18:1351–1378, 2008.

Blanchet, J. and Liu, J.C.

State-dependent Importance Sampling for Regularly Varying Random Walks. *Adv. in Appl. Probab.* 40: 1104-1128, 2008.

Duflo, M.

Random Iterative Models. Springer, Berlin, 1997.

Dupuis, P., Leder, K., and Wang, H.

Importance sampling for sums of random variables with regularly varying tails. ACM Trans. Model. Comput. Simul. 17(3) Article 14, July 2007.

Glynn, P.

Importance sampling for Monte Carlo estimation of quantiles.

Mathematical Methods in Stochastic Simulation and Experimental Design: Proc. 2nd St. Petersburg Workshop on Simulation 180-185, 1996.

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

References

References II

Hult, H. and Svensson, J.

On importance sampling with mixtures for random walks with heavy tails. ACM Trans. Model. Comput. Simul. 22(2) Article 8, 2012

Hult, H. and Svensson, J.

Efficient calculation of risk measures by importance sampling - the heavy tailed case. *Preprint*, 2009. http://arxiv.org/PS_cache/arxiv/pdf/0909/0909.3335v1.pdf

van der Vaart, A. and Wellner, J.

Weak convergence and empirical processes: with applications to statistics. Springer, 1996.

Waeber, R., Frazier, P., and Henderson, S.

A Baysian approach to stochastic root finding Proc. 2011 Winter Simulation Conference, 2011

