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Risk and Solvency

General context

Solvency II - the new regulatory framework
Internal models for risk assessment
Solvency principle: leave the company “as is” for one year,
then the value of assets
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Risk and Solvency

Insurance portfolio

Assets (fixed income, stocks, real estate)
Liabilities (claim payments, reserves)
Solvency capital requirement: VaR0.005(A1 − L1) < 0 or
equivalently F−1

e−r1 (L1−A1)
(0.995) < 0, where

e−r1(L1 − A1) = e−r1

n∑
k=1

(E [Ck | F1]− E [Ck ])e−(rk−1+∆rk−1)(k−1)

+ discounted loss from assets.
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Risk and Solvency

Claims Triangle: observed claims

Development year
Origin 0 1 2 · · · n − 1 n
−n − 1 C−n−1,0 C−n−1,1 C−n−1,2 · · · C−n−1,n−1 C−n−1,n
−n C−n,0 C−n,1 C−n,2 · · · C−n,n−1

...
...

...
−2 C−2,0 C−2,1
−1 C−1,0

0

Table: The observed upper triangle of paid claims. C−i.j is cumulative
claim amount for claims occurring in period −i and paid before time
−i + j .
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Risk and Solvency

Claims Triangle: unobserved claims

Development year
Origin 0 1 2 · · · n − 1 n
−n − 1
−n C−n,n

−n + 1 C−n+1,n−1 C−n+1,n
...

...
...

−1 C−1,1 C−1,2 · · · C−1,n−1 C−1,n
0 C0,0 C0,1 C0,2 · · · C0,n−1 C0,n

Table: The unobserved triangle of outstanding claims to be predicted.
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Risk and Solvency

Need for Simulation Algorithms

Many dependent risk factors
Rare events of interest
Need decent approximation of the tail of the distribution
(not only quantile estimates)
Possible reduction of computational cost by efficient
sampling
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Risk measures

Main message

Designing efficient importance sampling algorithms for rare
event probabilities is a good starting point for computing (tail)
risk measures efficiently.
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Risk measures

Risk measures
Value-at-Risk and Expected Shortfall

Consider a random variable X ∼ FX , representing the net worth
at time 1. Let L = −e−r1X be the discounted loss.

Value-at-Risk (quantile):

VaRp(X ) = F−1
L (1− p) = inf{x : FL(x) ≥ 1− p},

Expected shortfall:

ESp(X ) =
1
p

∫ p

0
VaRu(X )du

where p is small; say 0.005.
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Computation by importance sampling

Value-at-Risk

Generate L1, . . . ,LN independently from the sampling
distribution G.
Form the weighted empirical distribution/tail

GN(·) =
1
N

N∑
j=1

dF
dG

(Lj)δLj (·),

GN(x) =
1
N

N∑
j=1

dF
dG

(Lj)I{Lj > x}, x ∈ R.
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Computation by importance sampling

VaR continued

Estimate VaRp by G−1
N (p) where

G−1
N (p) = inf{x : GN(x) ≤ p} = {picture} = Lk ,N ,

k = inf{m : w1 + · · ·+ wm ≥ p},

and wj =
dF
dG (Lj,N).
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Computation by importance sampling

Illustration

From diploma thesis of P. Müller (KTH/ETH)
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Computation by importance sampling

Risk measures by importance sampling
Expected Shortfall

Computing Expected Shortfall by importance sampling:
Generate L1, . . . ,LN independently from G and form GN .
Compute the estimate

1
p

∫ p

0
G−1

N (u)du = {picture}

=
1
p

( k−1∑
j=1

wjLj,N +
(
p −

k−1∑
j=1

wj
)
Lk ,N

)
.
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Computation by importance sampling

Illustration

From diploma thesis of P. Müller (KTH/ETH)
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Empirical processes and importance sampling

Asymptotic theory
The large sample limit

Empirical process theory (CLTs as N →∞)
Large deviations theory (extensions of Sanov’s theorem)
as N →∞
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Empirical processes and importance sampling

Empirical processes

Suppose the empirical measures satisfies a CLT
√

N(GN − F ) w→ Z ,

where Z is centered Gaussian,
. . . and the delta-method implies

√
N(φ(GN)− φ(F )) w→ φ′F (Z ),

then we can use the asymptotic variance Var(φ′F (Z )) to
measure efficiency.

Objective: select sampling distribution Gn to get Std(φ′F (Z )) of
roughly the size of φ(F ).
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Empirical processes and importance sampling

Empirical processes and importance sampling
The CLT

Let G be the sampling distribution and w(·) = dF
dG (·).

Let Fa be the indicator functions x 7→ I{x > t}, t ≥ a.
Then, the weighted empirical measure

GN(f ) =
1
N

N∑
j=1

dF
dG

(Lj)f (Lj) = F̃N(wf ),

where F̃N is the empirical measure based on Lj , generated
from G;

F̃N(f ) =
1
N

N∑
j=1

f (Lj).
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Empirical processes and importance sampling

Empirical processes and importance sampling
The CLT

We have a CLT:
√

N(GN(f )− F (f )) w→ Z in L∞(Fa)
precisely if wFa is a G-Donsker class.
A sufficient condition for wFa to be G-Donsker is that Fa is
G-Donsker and EF [w(Xj)I{Xj > a}] <∞.
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Empirical processes and importance sampling

Empirical processes and importance sampling
Identifying the limit process

The limiting process Z is centered Gaussian with covariance
function

%(x , y) = N Cov(GN(x),GN(y))
= EG[GN(x)GN(y)]− EG[GN(x)]EG[GN(y)]
= . . .

= EF [w(X )I{X > y}]− F (x)F (y),

when y ≥ x ≥ a.
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Risk measures by importance sampling

VaR by importance sampling
CLT

Theorem Let Z be centered Gaussian with covariance %.
Suppose F has a continuous density f > 0 on the interval
[F−1(q)− ε,F−1(p) + ε], for 0 < p < q < 1 and ε > 0. Then

√
N(G−1

N − F−1) w→ Z ◦ F−1

f ◦ F−1 , in L∞[p,q],

where the right-hand side refers to the random function
u 7→ Z (F−1(u))

f (F−1(u))
.
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Risk measures by importance sampling

ES by importance sampling
CLT

Expected shortfall is given by

ES1−p(X ) =
1
p

∫ p

0
F−1(u)du =: γp(F−1).

It is estimated by γp(G−1
N ).
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Risk measures by importance sampling

ES by importance sampling
CLT

Theorem Assume the hypotheses in the previous theorem
and in addition that ρ(x , x) = o([f (x)/F (x)]2) and∫ ∞

F−1(p)

∫ ∞
F−1(p)

%(x , y)dxdy <∞.

Then

√
N(γp(G−1

N )− γp(F−1)) w→ γp

(Z ◦ F−1

f ◦ F−1

)
=

1
p

∫ p

0

Z (F−1(u))
f (F−1(u))

du.
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Robbins-Monro

Robbins-Monro algorithm

Let f : R→ R be continuous and decreasing.
Look for x∗ solving f (x∗) = 0.
Robbins-Monro Algorithm:

Take Xn = Xn−1 + ρnYn where E [Yn | Xn−1] = f (Xn−1) and∑
ρn =∞,

∑
ρ2

n <∞.

Example: Take f (x) = F (x)− p to search for a quantile.
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Bayesian Root Finding

A Bayesian Root Finding Method
(Horstein, ’63; Waeber, Frazier, and Henderson, ’11)

Let f : (0,1)→ R be continuous and decreasing.
Look for x∗ solving f (x∗) = 0.
Can evaluate f (x) with error and observe Y (x) where

Y (x) =


1 w.p. q if x < x∗,
−1 w.p. 1− q if x < x∗,

1 w.p. 1− q if x > x∗,
−1 w.p. q if x > x∗.

Algorithm:
Let π0 be a prior on x∗.
Measure at x1 = median(π0).
Observe Y1(x) and compute posterior π1(x∗ | Y1(x)).
Take x2 = median(π1) and iterate.
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Bayesian Root Finding

A quantile estimation test problem
Heavy-tailed random walk

Let X = Sk = Z1 + · · ·+ Zk a heavy-tailed random walk
(reg. var.)
Then F (x) = x−αL(x) where L is slowly varying
Have efficient importance sampler for computing F (x).
How to select thresholds x1, x2, . . . to obtain

1 a good estimate of xp = F−1(p) with p close to 1?
2 a good approximation of F above xp?
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Bayesian Root Finding

A Normal Bayesian Algorithm
(with C. Mercadier)

Aim to estimate xp by first estimating xαp .

Start with prior on xαp given as N(xα1 , v
2
1 ).

Compute estimate p̂1 of F (x1) by I.S. based on sample
size m.
p̂1 is approx N(F (x1), σ

2
1/m).

Using F (cx) ≈ c−αF (x) with c = x1/xp, x = xp it follows
that p̂1 is approx N(p(xp/x1)

α, σ2
1/m).
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Bayesian Root Finding

A Normal Bayesian Algorithm
(with C. Mercadier)

Then the posterior of xαp is normal with

mean = xα1 +
mpv2

1

x2α
1 σ2

1 + mp2v2
1

xα1 (p̂1 − p)

var = v2
1 −

mpv2
1

x2α
1 σ2

1 + mp2v2
1

pv2
1 .

Iterating the algorithm gives the following updates:

xαn+1 = xαn +
mpv2

n

x2α
n σ2

n + mp2v2
n

xαn (p̂n − p)

v2
n+1 = v2

n −
mpv2

n

x2α
n σ2

n + mp2v2
n

pv2
n .
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Bayesian Root Finding

Summary

Efficient simulation is relevant in insurance (and finance)
application, when building models for risk assessment.
Efficient importance algorithms for computing rare-event
probabilities is a good starting point for computing risk
measures.
Theoretical analysis is possible by means of empirical
process theory (CLT/LDP)
Adapted importance sampling procedures needed to find
the appropriate tail region.
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